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Abstract

We consider a risk averse decision maker who dislikes ambiguity as






cost, while no treatment is preferred to L. Can it be the case that eventually
L" becomes desirable? We show that this is indeed the case. Under some
conditions, n repetitions of the ambiguous treatment are eventually preferred
to no treatment (Theorem 2).

Should society encourage, maybe even enforce, the use of the ambiguous
treatment? Patients may be willing to pay the extra price for the unambigu-
ous treatment if it exists, or to bear the cost of no treatment if an alternative
treatment does not exist. But if society adopts the point of view of social
planers and care takers (even if they do not have any better information),



,let P(E) = -.

Assume now the existence of a sequence of such urns. Let S; = S be the
set of states in urn i with the corresponding algebra ; = . The information
regarding each of these urns is the same. Moreover, the outcome, or even the
mere existence of any urn doesn’t change the decision maker’s information
regarding any other urn. Let S



"(?) =0,



Q Note that this is a product capacity. ForallE=E! ::: E", "(E) =
Q?zl Y(E") = 0, unless for all i, E'" = fG;Rg, in which case "(E) =
T, NEhH =1

Following the discussion in the introduction, consider a given ambiguous
act L with the anchor lottery X. Suppose that the expected value of X
is zero and let X dominate a lottery Y by rst order stochastic dominance
(FOSD). Theorem 1 shows that as n ¥ 1, the decision maker will prefer
playing L for n times (that is, L") rather than playing Y for n times.

Theorem 1 Suppose that the CEU preferences satisfy ambiguity aversion,
risk aversion, and boundedness. Let L be an ambiguous act with an anchor
lottery X such that E(X) = 0. Then for every Y dominated by X by strict
FOSD there exists n such that foralln>n,L" Y".

Remark: The proof of Theorem 1 covers also the case E(X) < 0, except for

; Ify) — i U0
the case where XI!|mlu (xX) = 4 but XI!|ml 060 = 0.

Consider now a di erent case, where E(X) > 0. This of course doesn’t
mean that the decision maker accepts X, or even that if he accepts it once
he would accept it n act



Proposition 1 shows that under these conditions, from a certain point on the
ambiguous acts L"



Hence P" is in the core of " and clearly P" and P" do not converge to the
same limit.

Our results do not always hold without the boundedness assumption. See
example 2 in the appendix. The boundedness of u from above is required for
Proposition 1. See example 3 in the appendix.

4 The Smooth Model

Klibano , Marinacci, and Mukerji [16] suggested the following smooth case



As before, let X" and L" be n-repetitions of X and L. The value of X" is
EUY(X"). Consider L". A typical sequence in L" is a list of n lotteries, each

and ;ji = n. The probability of suclba sequence is the product of the
corresponding ' probabilities, that is, ~;( i There are ()" (“ to the
power of n) such possible sequences, denote them fY-”gJQZ and denote their

J
corresponding probabilities . We thus obtain that

J
&
SM (L™ = n u Y(EU(Y|") (2)

i
i=1

The next theorem shows that the results of Theorem 1 hold if the absolute

measures or risk aversion of u and converge to the same limitasx ¥ 1.

Observe that although ?(()’(‘)) ‘:Of(()’(‘)) implies that isana ne transformation
iction lim — = [im U0
of u, the restriction Xl!lml o) — XI!lml 760
is an a ne transformation of u. For example, let u(x) = x and (x) = x3
forx < 1.

does not imply that in the limit

Theorem 3 Suppose that the SM preferences satisfy ambiguity and risk
aversion. Let L be an ambiguoug act with an anchor lottery X such that
— ; ™) — 1im L) i

E(X)=0. If Xl!lml o) — Xl!lml 60 then for every Y dominated by X by
strict FOSD there exists n such that foralln>n ,L" Y.

Proposition 1 analyzed conditions under which, within the CEU model,
the acts L" become strictly desirable. The next proposition o ers conditions
for a similar result under the SM model. For this, we restrict attention to
the case where u represents constant absolute risk aversion. Observe that by
risk aversion, X 0 implies that E(X) > 0.

Proposition 3 Suppose that the SM preferences satisfy ambiguity aversion

and constant absolute risk aversion. If lim —& = lim Y then for
x1 1 ') x1 1 U

exyery ambiguous act



risk aversion of utility function u is bounded from above [from below] by



An event E is ambiguous if the decision maker may treat it di erently
from its anchor probability. This means that if the decision maker is ambi-
guity averse, then the anchor probability P1(E) is not the minimal possible
value of the range of the possible probabilities of E. To see why, note that
if L is not a probabilistic act, then there must be at least two ambiguous
events in its support. Therefore, there is a lottery X4 that is dominated by
X by FOSD. By de nition, MEU(L) 6 EU(Xq) < EU(X).



then the implications of Theorem 2, Proposition 1 (of the CEU model) and
Proposition 3 (of the smooth model) do not hold.

Proposition 6 Let the MEU preferences satisfy risk aversion. For every
ambiguous act L with an anchor lottery X such that E(X) > 0, if there
exists & 2 Q such that E(X4) < 0 then for asu ciently large n, 0 L".

6 Discussion

As early as 1961 did William Fellner [8, pp. 678{9] ask: \there is the question
whether, if we observe in him [the decision maker] the trait of nonadditivity,
he is or is not likely gradually to lose this trait as he gets used to the uncer-
tainty with which he is faced.” Fellner pointed out a fundamental problem
in answering this question empirically: In an experiment, decision makers
may understand that the ambiguity is generated by a randomization mecha-
nism and is therefore not ambiguous, but this is not necessarily the case with
processes of nature or social life.

Our analysis shows that a lot depends on the way we choose to model
ambiguity. But at least under some assumptions, some aspects of ambiguity
aversion become insigni cant when the decision maker is faced with many
similar ambiguous situations within the CEU and the smooth models, and
even in the maxmin model. The term \similar" is of course not well de ned,
but loosely speaking, our analysis shows that even though decision makers
don’t learn anything new about the world as they face repeated ambiguity,
they may still learn not to fear this lack of knowledge.

The proofs of Theorems 1, 3, and 4 reveal another property of preferences
as n increases to in nity. Denote by c" and d" the certainty equivalents of

X" and L". These theorems show that lim % = lim % This interpretation
nt 1 nt 1

of the theorems deals with the certainty equivalents per case. An alternative
way to analyze attitudes per case is to divide the act L" and the anchoring
lottery X" by n. The probabilistic lottery will then converge to its average.
Maccheroni and Marinacci [18] proved that as






Appendix A: Proofs

j=1 j=i+1

let g”lge piecewise linear on the segment [0; pg ] and on the segments

i+1

[ }:1 Py =Pl =1 ke L the tha_lt by amk_)iguity aversion for
all E, "(E) 6 P"(E), hence by the piece-wise linearity of g", we have
g"(p) = p. Eq. (1) thus becomes
" ; | . 1#
3 X X
CEU"(L") =u(xDg"(pD) +  u(xy) ¢" i g" P}
i=2 j=1 j=1

Denote by F the distribution of lottery






hence by inequality (3), for su ciently large n,

o g UE) u@) o Kue)

u'(cn) u’(cM)
By I’'Hopital’s rule, since Iimlu(x) = 1 and |m u'(x) = 4, Iiml
x 1 x x 1

wx) — g uwW(x) _ _
00 XI!|m1 0y — a4 0. By Lemma 4, Im c¢c" = 1, hence for a
su ciently large n,

Ku(c" K+1 nodn _ K+1

u(c) >06- Z6 10
u'(cn) a n n an 1

It thus follows that lim £ = lim <.
nt® 1 nt® 1

Denote this common limit ¢. By Lemma 5, ¢ is the certainty equivalent of
X under v, where v(x) = x ifa=0,and v(x) = e ®ifa>0. Consider Y
dominated by X by strict FOSD, and let § < & be the certainty equivalent of
Y under v. Let b" be the certainty equivalent of Y " under u. By Lemma 5,
I|m =1, hence I|m b— < I|m £ It thus follows that for su ciently large

nt!1

n, d”>bn hence Ln Yn

Proof of Theorem 2: Assume wlg that u(0) = 0, u’(0) = 1, that ng = 1,

and hence c" > 0 for all n. Assume rst that I'imluo(x) = 1. De ne
X5

u"(x) = u(x) u(nxmy) and note that u"(nx,) = 0 and u"(x) < 0, for all

outcomes of X". These inequalities and the boundedness assumption imply

that for the CEU}},, the CEU" functional with respect to u",
Z

u"(d") = CEUJ. (L") = u"(z) dg"(Fxn(2))
Z
> K u"(2)dFxn(z) > Ku"(c")

The inequality u"(c") > u"(0) yields u"(d") > Ku"(0).
Going back to u, noting that 1 K 6 0 and that, by concavity, u(nxn,) 6
nu(Xm),

u(d" = u"(d") + u(nxm,) > Ku"(0) + u(nxm)
=  Ku(hxy) +u(nxy) =@ K)u(hxqy)
> n(l K)u(Xm)
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Denote A= (1 K)u(Xm). By assumption, A 6 0. Note that the concavity
of uand lim u'(x) = A imply lim u (y)=y = 0. Then, d" > u (nA)
xt 1 y? 1
. . . Q . u 1(nA) —
|mpI|-es n“-mln >nI|'rn1 —~— A=0.
Finally, if Il|m1u°(x) =H<1
X5




and

Z
CEU" L " = e®dg" Fr ay(d) =
Z Z
e ¥dg"(Fxn (@)= e ¢ dg" (Fxn(2)) = ®)
Z
e e Zdg"(Fxn(z)) =" e 3" = 1

The sequence <& nl=1 is bounded (since the support of X is) and assume,

n
by way of negation, that the sequence does not converge to ¢t. Then, wlg

H n Ny - - . n;
there exists " > 0 and a subsequence fdn—fgjl:l satisfying _Il'rridn—jJ < ct
il jr

Without loss of generality, assume that for all j, % <c! " Hence,
o Z
n; J
CEU" L 4 = e ¥dg" Fx gni=n;ni(2)
Z

> e azdgn FX d



The ratio between this di erence and 2 ", the probability of E™, is pz_n,
which is not bounded by any K.

For Theorem 1, consider the ambiguous act L = ( 0:5; E;; 0:5; E;) with
the anchor lottery X = ( 0:5;1;05;3). Let Y = ( 0:55;3;0:45;2). The
certainty equivalent of Y™ is 0:17n and that of L" is  0:21n.

For the other results, consider the act L = ( :35; E;; 0:65; E,) with the
anchor lottery X = (' 0:35; 3;0:65; 3) and let Y = (' 0:02;1). The certainty
equivalent of X" is 0:03n, while that of Y" is 0:02n > 0:06n, which is
larger than the certainty equivalent of L".

Example 3 The boundedness of u from above is required for Proposition 1.

Let X =( £;3; 2;2). De ne "asin example 1. We get

4n 1

any — H
BUXTY = in 2@ (6)
> 4n 1 in 1
n any — 1 _
CEU"(L )—2__ n —24nu(|)+ on 24nu(n) @)

Let u(x) = x for x > 0. We de ne u( n) inductively. Let

X n >X 4 . 4

i n n
oo = ien YO 0t 03 ®
i= n+1 i=1
Wnpn = 2u( n+1) u( n+2)
and de ne u for x < 0 as follows. For n =1;:::; let u( n) = minfv,; w,g,

andforx2 ( n; n+1)letux) =u( nN)+xX+nu( n+1) u( n).
The function u is strictly increasing and weakly concave.

Claim 1 limu( n)=n= 1.
nt 1

Proof: Suppose not. Then there exists A > 0 such that for alln, u( n)=n
6 A, and since between n and n + 1 the function u is linear, it follows
that foralln, ...,



By de nition, u( n) 6 vy, hence it follows by egs. (7) and (8) that for
all n, CEU"(X“") 6 0. On the other hand, by eq. (7),

X 4n u(i) > 4n i 4n n
E n X4n = 2 + - ¥ .
CEUT(X™) - i+n 24 - i+n 24n 2n 240
(n 1nA 4n 1
> a1, g YL 5 PrXTE0 (9
Let = O D04 40 Clearly
e _ NN+ DA LA
n (N 1)nA2én+3 40
(n+1)(@n+4@n+3)(4n+2)(4n+1) 44 16
16(n Dn@Bn+4)@Bn+3)3n+2) ~ 16 3B 27

Hence Iirnl » = 0. Likewise, Pr(X*" 6 0) 6 -&- “" ¥ 0, hence the expres-
nk

240 n

sion of eq. (9) converges to %; a contradiction.

De ne ng =0, and let n

I n)



Proof of Theorem 3: The certainty equivalents are de ned by u(c") =
EUY(X") and (d") =SM Y(L").2 By ambiguity aversion, is more concave
than u, hence SM (L") 6 SM Y(L") 6 SM"Y(L"). Let d" be the certainty
equivalent of L" under SM  and note that c" is the certainty equivalent of
SMY (since SM"Y(L") = EUY(X™)). Hence d" 6 d" 6 c" for all n and

6 lim

nt® 1

6 lim

nt® 1

lim

d" dn c"
niin n n

- n — n - - - drl —_ - Cn
Using SM (L") = EU (X"), Lemma 5 implies nIllran = nllln:]LF Hence,

lim € = lim <. The rest of the proof is similar to the last paragraph in the
nt® 1 nt® 1

proof of Theorem 1.

Proof of Proposition 3



where the limit is 0 because EU't(X) 2 ( 1;0) and Iiml Pr(y 6 X" <0) =0.
nt
As IimlEU (XM)x=0 = sup, (x), we conclude that for su ciently large n,
nt

EU (X")> (0)and L" O.

Proof of Proposition 4: If the risk aversion of is bounded from below
by t and u is concave, then for every n, d 6 d", where dj} is the certainty
equivalent of L" under uand and d" is the certainty equivalent of L" under

the functions u(x) =xand (X)= e ™
Denote z; = E(Xi), Z = (z1; ';::;z-; 7) and note that

X< P. .
E(Z) = 'E(Xp) =E ., 'Xg =E(X)=0

i=1

If the decision maker is using  and u, then

> >
SM Y(L) = ! u H(EUY(Xy)) = '(EXp))
i=1 i=1
X
= " (z)=EU (2)

i=1
Also, it follows from eq. (2) that

X X

SM YL = Tou NEUY(YM) = i [EQY)]
j=1 i=1

The expected value of Y;" is the sum of the expected values of the sequence
of lotteries it represents. As there are in thi&gequence Ji lotteries of type
Xpi, 1 =1;1:17%, the expected value of Y™ is  ;_; JiE(Xpi). Hence

* X hp i
i [EO] = j = JiE(Xpi)
Jj=1 j=1
X hp i

= 7 —dizi =EU (2"
i=1
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Assume rst that is exponential of the form (x) = e ™. If uis linear,
then the proof of the rst part of Proposition 4 implies & = d* < 0 = <,
Next, consider exponential u(x) = e ¢ where, by assumption, s > 0. Since
t>s, h(y) = ( y)¥s is strictly concave and increasing. Then, the above
equations imply u(d') < u(c!) and d! < c?.

By Lemma 1, % = ¢! for all n and hence nIl'rnl% = ¢. Moreover, denoting

¢i = u YEUY(Xp)) and using Lemma 1, for any sequence of lotteries Y =

EUY ()™ (X)) = JEUY(Xp) ™ :ir JEUY(X) " =

1 . n Lo g gnc. .
g sa " e s " = g stMariane) — ymle, +:::+n'c)

Therefore, denoting C = (c1; *;::5c; ), SM Y(L") can be writtenas EU (C™)~



P
(note that ¢(s) = %In( pie )). Using I’'Hopital’s rule we get

P P
: : iXie i piXg o, pixie S )
lim 6(s) = lim -PE " — iy PXAT piza PX€ =%,
s¥ sy pie SXi s¥1  pp+ o, pie s(Xi X1)

which, noting that ¢c" > nx; and hence % > Xq, implies Ieri% = X;. Simi-
net

larly, for Y = X ", the certainty equivalent b" of Y " satis es Il'ml% =X
nZz

Now d" > nx; implies Ii'rri_b: =x; "<x, 6 Ii'ml—dr:, hence for a su ciently
ne net
large n, L" Y™

Next, consider the case lim ©® = a 2 (0:1). By Lemma 5 case

M, W60
(iii), Iiml% = ¢ where € is the certainty equivalent of X under the utility
nt
v(ix) = e . Let ¢ 2 Q be a probability vector such that X strictly

FOSD dominates X4 and let ¢ denote the ceytainty pquivpler of Xo yinder—- g2/ 175 TF
N M - -

v. Clearly, d < ¢. De ned" =u “(EU Xgthroughout that E(X) 6 0. In Lemmas 3{6 we assume

all utility functions is zero at zero and that their derive

Lelg\ma 1 Letu(x) = e . Then for lotteries Xy;:::
u( 2;1 CE(Xji)), where CE(X) is the certainty equival
lar, if X; = X for all i, then for all n, "



Proof: The proof follows from a property of the moment generating functions
(see Bulmer [1]).

R
Lemma 2 There exists ng such that foralln > ng, g,z dFxn(z) > nzx(l—zl)

n +nE(X)

Proof: As 2 be the variance of X, n 2 is the variance of X". Choose
1
22



Xden(X) Xden(X) Xden(X)
7 x>0 = 7 y() - x<y() =
= 4 O 4
u(x) dFxn(x) u(x) dFxn(X) + u(x) dFxn(X)
x<0 y() x<y( )
zZ, Z
Xden(X) Xden(X)
S y() xsy( ) y 1
= 0 = n!;_
u(x) dFxn(Xx) + X dFxn(X)
y() x<y( )

This is true for every > 1, hence the claim.

Conclusion 1 If Iimlu“(x) = 14, and if for all x < M, u(x) = v(x), then
x 1
. CG 0 ﬂ
fm = Jim
Proof: For M > 0, the fact follows from Lemma 3. For M < 0, it follows
by Lemma 3 and by the Central Limit Theorem (observe that Iirnl Pr(X" 2
nt

[M;0]) = 0).
Lemma 4 If lim u'(x) =1, then limc"= 1.
xt 1 nt 1
Proof: By risk aversion, ¢" 6 E(X") = nE(X). Therefore, if E(X) <

0, we are through. If E(CX) = 0, we show that for every integer m < 0,
IirriEU(X“) 6 u(m 1). The value of EU(X") equals
nt

2 ? 3
R
7 u(x) dFxn(x) u(x) dFxn(x)
. 2(np‘ 1) X?O
u(x) dFxn(x) g1 + u(x) dFxn(X) * u(x) dFxn(x)
x62(m 1) x62(m 1) x62(m 1)

As iy the proof of Lemma 3, it follows by the central limit theorem that
lim 2 u(x) dFxn(x) = 0 and

ngq 2(m 1)
R
Il R X=>0 u(X)dFXn(X) — Ilm Rx>0 u(X)dFXn(X) —
Tl ea(m 1)U(X)den(X) nii u(x) dFxn (X)

X60
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where the last equality follows by Lemma 3. By the Central Limit Theorem,
the probability of receiving a negative outcome is *



Hence,




monotonically increasing towards H when x ¥ 1) and hence I.iml ‘:O;(()’(‘)) =
Xz

0, contradicting a > 0.
Forany " >0denote v.,(X) = e @ v. (xX) = e @ "Xand let &,
and ¢ satisfy
Z Z

woo e @RIRG) e ® = e 6 MR

e

Since v, is more concave than v and v is more concave than v+ , we have
6, <C<06 . Let¢' and¢? denote the certainty equivalents of X" under

_ e e
v-, and v- , respectively. By Lemma 1, n“!mlT = ¢, and rlll'ran =6 .

As lim U0 —

I | ey — @ 0, for every a > " > 0 there is x("") such that for all
X2

x6x("),a "< ‘jff(()’(‘)) <a+". De ne the functionsu-, =+; , by
C u(x) X 6 x(")
u- (X) =
v (X) + otherwise
where = YO ang = yx(") v+ (X("")) are de ned as to enable

ve (x()
continuity and di erentiability of these functions.

Clearly, u- is more risk averse than v- and u-_ is less risk averse than
v-_. Hence, ¢, and ¢, , the certainty equivalents of X" under u- _and

u- , respectively, satisfy &7 >c]. andc] > ¢€" . Hence,

+



UOO(X) VOO(X)
<s<t< 760 - Then

In(U’(0)) In(u'(x)) 6sx and In(V’'(0)) In(V'(x)) >tx =)
In(W’(x)) > In(u’(0)) sx and In(v'(x)) 6 In(v'(0)) tx =)
u’(x) > u'(0)e > and V'(x) 6 V/(0)e * =)
ux) >u() u’(0)e = and v(x) 6v(0) V'(0)e *=)
ux) v(x) = u v [U'©0e = V(0)e ¥

As x ¥ 1, the rhs converges to 1., hence the claim.
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